Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Microb Cell Fact ; 22(1): 39, 2023 Feb 25.
Article in English | MEDLINE | ID: covidwho-2280034

ABSTRACT

BACKGROUND: Virus-like particles are an interesting vector platform for vaccine development. Particularly, Hepatitis B virus core antigen has been used as a promising VLP platform. It is highly expressed in different recombinant expression systems, such as E. coli, and self-assembled in vitro. It effectively improves the immunogenicity of foreign antigenic epitopes on its surface. Various foreign antigens from bacteria, viruses, and protozoa can be genetically inserted into such nanoparticles. The effective immunogenicity due to VLP vaccines has been reported. However, no research has been performed on the SARS-CoV2 vaccine within this unique platform through genetic engineering. Considering the high yield of target proteins, low cost of production, and feasibility of scaling up, E. coli is an outstanding expression platform to develop such vaccines. Therefore, in this investigation, we planned to study and develop a unique HBc VLP-based vaccine against SARS-Cov2 utilizing the E. coli expression system due to its importance. RESULTS: Insertion of the selected epitope was done into the major immunodominant region (MIR) of truncated (149 residues) hepatitis B core capsid protein. The chimeric protein was constructed in PET28a+ and expressed through the bacterial E. coli BL21 expression system. However, the protein was expressed in inclusion body forms and extracted following urea denaturation from the insoluble phase. Following the extraction, the vaccine protein was purified using Ni2 + iminodiacetic acid (IDA) affinity chromatography. SDS-PAGE and western blotting were used to confirm the protein expression. Regarding the denaturation step, the unavoidable refolding process was carried out, so that the chimeric VLP reassembled in native conformation. Based on the transmission electron microscopy (TEM) analysis, the HBC VLP was successfully assembled. Confirming the assembled chimeric VLP, we explored the immunogenic effectivity of the vaccine through mice immunization with two-dose vaccination with and without adjuvant. The utilization of adjuvant was suggested to assess the effect of adjuvant on improving the immune elicitation of chimeric VLP-based vaccine. Immunization analysis based on anti-spike specific IgG antibody showed a significant increase in antibody production in harvested serum from immunized mice with HBc-VLP harboring antigenic epitope compared to HBc-VLP- and PBS-injected mice. CONCLUSIONS: The results approved the successful production and the effectiveness of the vaccine in terms of humoral IgG antibody production. Therefore, this platform can be considered a promising strategy for developing safe and reasonable vaccines; however, more complementary immunological evaluations are needed.


Subject(s)
COVID-19 , Hepatitis B , Vaccines, Virus-Like Particle , Mice , Animals , Epitopes , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , RNA, Viral/metabolism , Immunity, Humoral , Escherichia coli/genetics , SARS-CoV-2 , Adjuvants, Immunologic/metabolism , Mice, Inbred BALB C
2.
Gene Rep ; 26: 101537, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1664941

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of the coronavirus disease (COVID-19) pandemic, has infected millions of people globally. Genetic variation and selective pressures lead to the accumulation of single nucleotide polymorphism (SNP) within the viral genome that may affect virulence, transmission rate, viral recognition and the efficacy of prophylactic and interventional measures. To address these concerns at the genomic level, we assessed the phylogeny and SNPs of the SARS-CoV-2 mutant population collected to date in Iran in relation to globally reported variants. Phylogenetic analysis of mutant strains revealed the occurrence of the variants known as B.1.1.7 (Alpha), B.1.525 (Eta), and B.1.617 (Delta) that appear to have delineated independently in Iran. SNP analysis of the Iranian sequences revealed that the mutations were predominantly positioned within the S protein-coding region, with most SNPs localizing to the S1 subunit. Seventeen S1-localizing SNPs occurred in the RNA binding domain that interacts with ACE2 of the host cell. Importantly, many of these SNPs are predicted to influence the binding of antibodies and anti-viral therapeutics, indicating that the adaptive host response appears to be imposing a selective pressure that is driving the evolution of the virus in this closed population through enhancing virulence. The SNPs detected within these mutant cohorts are addressed with respect to current prophylactic measures and therapeutic interventions.

3.
Biotechnol Lett ; 44(1): 45-57, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1536319

ABSTRACT

After its emergence in late 2019 SARS-CoV-2 was declared a pandemic by the World Health Organization on 11 March 2020 and has claimed more than 2.8 million lives. There has been a massive global effort to develop vaccines against SARS-CoV-2 and the rapid and low cost production of large quantities of vaccine is urgently needed to ensure adequate supply to both developed and developing countries. Virus-like particles (VLPs) are composed of viral antigens that self-assemble into structures that mimic the structure of native viruses but lack the viral genome. Thus they are not only a safer alternative to attenuated or inactivated vaccines but are also able to induce potent cellular and humoral immune responses and can be manufactured recombinantly in expression systems that do not require viral replication. VLPs have successfully been produced in bacteria, yeast, insect and mammalian cell cultures, each production platform with its own advantages and limitations. Plants offer a number of advantages in one production platform, including proper eukaryotic protein modification and assembly, increased safety, low cost, high scalability as well as rapid production speed, a critical factor needed to control outbreaks of potential pandemics. Plant-based VLP-based viral vaccines currently in clinical trials include, amongst others, Hepatitis B virus, Influenza virus and SARS-CoV-2 vaccines. Here we discuss the importance of plants as a next generation expression system for the fast, scalable and low cost production of VLP-based vaccines.


Subject(s)
COVID-19 Vaccines/biosynthesis , Plants, Genetically Modified/metabolism , SARS-CoV-2/immunology , Vaccines, Virus-Like Particle/biosynthesis , Antigens, Viral/genetics , Antigens, Viral/metabolism , COVID-19 Vaccines/economics , COVID-19 Vaccines/genetics , Gene Expression , Plants, Genetically Modified/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Vaccines, Virus-Like Particle/economics , Vaccines, Virus-Like Particle/genetics , Viral Vaccines/biosynthesis , Viral Vaccines/genetics
4.
Brief Bioinform ; 22(5)2021 09 02.
Article in English | MEDLINE | ID: covidwho-1196980

ABSTRACT

Coronavirus disease 2019 has developed into a dramatic pandemic with tremendous global impact. The receptor-binding motif (RBM) region of the causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), binds to host angiotensin-converting enzyme 2 (ACE2) receptors for infection. As ACE2 receptors are highly conserved within vertebrate species, SARS-CoV-2 can infect significant animal species as well as human populations. An analysis of SARS-CoV-2 genotypes isolated from human and significant animal species was conducted to compare and identify mutation and adaptation patterns across different animal species. The phylogenetic data revealed seven distinct phylogenetic clades with no significant relationship between the clades and geographical locations. A high rate of variation within SARS-CoV-2 mink isolates implies that mink populations were infected before human populations. Positions of most single-nucleotide polymorphisms (SNPs) within the spike (S) protein of SARS-CoV-2 genotypes from the different hosts are mostly accumulated in the RBM region and highlight the pronounced accumulation of variants with mutations in the RBM region in comparison with other variants. These SNPs play a crucial role in viral transmission and pathogenicity and are keys in identifying other animal species as potential intermediate hosts of SARS-CoV-2. The possible roles in the emergence of new viral strains and the possible implications of these changes, in compromising vaccine effectiveness, deserve urgent considerations.


Subject(s)
COVID-19/virology , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/classification , Genome, Viral , SARS-CoV-2/classification
5.
Biotechnol Appl Biochem ; 69(1): 30-40, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-919882

ABSTRACT

The necessity and impact of SARS-CoV2 on the world's health have led to developing and producing practical and useful vaccines for this deadly respiratory virus. Since April 2020, a vaccine for the virus has been developed. Given that comorbidities such as diabetes, hypertension, and cardiovascular disease are more prone to viruses and the risk of infection, vaccines should be designed to protect against high-risk respiratory illnesses. Including SARS, MERS, influenza, and the SARS-CoV-2 provide a safe immune response. Here, we review the information and studies that have been done to help develop strategies and perspectives for producing a safe and ideal vaccine to prevent COVID-19 in normal people, especially at high-risk groups such as diabetes patients.


Subject(s)
COVID-19 , Diabetes Mellitus , COVID-19 Vaccines , Humans , RNA, Viral , SARS-CoV-2
6.
Infect Genet Evol ; 85: 104556, 2020 11.
Article in English | MEDLINE | ID: covidwho-753095

ABSTRACT

A novel coronavirus related to severe acute respiratory syndrome virus, (SARS-CoV-2) is the causal agent of the COVID-19 pandemic. Despite the genetic mutations across the SARS-CoV-2 genome being recently investigated, its transcriptomic genetic polymorphisms at inter-host level and the viral gene expression level based on each Open Reading Frame (ORF) remains unclear. Using available High Throughput Sequencing (HTS) data and based on SARS-CoV-2 infected human transcriptomic data, this study presents a high-resolution map of SARS-CoV-2 single nucleotide polymorphism (SNP) hotspots in a viral population at inter-host level. Four throat swab samples from COVID-19 infected patients were pooled, with RNA-Seq read retrieved from SRA NCBI to detect 21 SNPs and a replacement across the SARS-CoV-2 genomic population. Twenty-two RNA modification sites on viral transcripts were identified that may cause inter-host genetic diversity of this virus. In addition, the canonical genomic RNAs of N ORF showed higher expression in transcriptomic data and reverse transcriptase quantitative PCR compared to other SARS-CoV-2 ORFs, indicating the importance of this ORF in virus replication or other major functions in virus cycle. Phylogenetic and ancestral sequence analyses based on the entire genome revealed that SARS-CoV-2 is possibly derived from a recombination event between SARS-CoV and Bat SARS-like CoV. Ancestor analysis of the isolates from different locations including Iran suggest shared Chinese ancestry. These results propose the importance of potential inter-host level genetic variations to the evolution of SARS-COV-2, and the formation of viral quasi-species. The RNA modifications discovered in this study may cause amino acid sequence changes in polyprotein, spike protein, product of ORF8 and nucleocapsid (N) protein, suggesting further insights to understanding the functional impacts of mutations in the life cycle and pathogenicity of SARS-CoV-2.


Subject(s)
COVID-19/virology , Gene Expression Profiling/methods , Polymorphism, Single Nucleotide , SARS-CoV-2/classification , Viral Proteins/genetics , COVID-19/genetics , Gene Expression Regulation, Viral , High-Throughput Nucleotide Sequencing , Humans , Iran , Pharynx/virology , Phylogeny , Quasispecies , SARS-CoV-2/genetics , Sequence Analysis, RNA , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL